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The group at the Systems Optimization Laboratory (SOL) were the first to
recognize the connection between Karmarkar's (1984) projective method and the
logarithmic barrier method (see Gill, Murray, Saunders, Tomlin and Wright, 1986).
It is now generally recognized that essentially all interior-point methods for linear
programming inspired by Karmarkar's method are closely related to application of
Newton's method to a sequence of barrier functions (see e.g., Gonzaga, 1987; Rene-
gar, 1988; Anstreicher, 1988). Each barrier function is defined from the objective
function and a barrier term that is infinite along the boundary of the feasible region.
As the weight on the barrier term is reduced to zero, the solution of the subproblem
becomes closer to the solution of the original problem.
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1. PROJECT DESCRIPTION

This report describes technical progress during the final twelve months of AFSOR
Contract 87-01962. The project involves study of the theoretical properties and
computational performance of techniques that solve linear and nonlinear programs
by means of nonlinear transformations.

The group at the Systems Optimization Laboratory (SOL) were the first to
recognize the connection between Karmarkar's (1984) projective method and the
logarithmic barrier method (see Gill, Murray, Saunders, Tomlin and Wright, 1986).
It is now generally recognized that essentially all interior-point methods for linear
programming inspired by Karmarkar's method are closely related to application of
Newton's method to a sequence of barrier functions (see e.g., Gonzaga, 1987; Rene-
gar, 1988; Anstreicher, 1988). Each barrier function is defined from the objective
function and a barrier term that is infinite along the boundary of the feasible region.
As the weight on the barrier term is reduced to zero, the solution of the subproblem
becomes closer to the solution of the original problem.

2. REVIEW OF PROGRESS

2.1. Summary

During the last year, research has concentrated on barrier function methods for
linear programming. Highlights of this year's research include:

o The completion of an implementation that treats linear programs in the form
that occurs most often in practice, i.e., the general primal problem

mincTx subject to Az = b, I < x < u.

This work culminated in the first reported results on all the problems in the
initial NETLIB test set. These results subsequently appeared in the thesis of
Aeneas Marxen.

a The development of a sparse least-squares solver based upon a combination of
Cholesky factorization, Schur complement and iterative refinement.

* The formulation of a new single-phase dual method that again treats the
general primal problem with both upper and lower bounds.

e Completion of the preliminary theoretical analysis of a class of shifted barrier
methods.

The connections with more traditional areas of nonlinear programming and nu-
merical linear algebra, along with much analysis of path-following methods, have
indicated that the new class of interior-point methods are capable of achieving good
performance on a significant proportion of real-world problems. In terms of robust-
ness the verdict is still out, since present implementations (within our experience)
are highly sensitive to slight changes in strategy. However, there is every hope that
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useful and acceptably reliable implementations will be developed within the next
few years.

For a review of recent developments in interior-point methods for linear pro-
gramming, with an emphasis on computational results, see Report SOL 88-14.

2.2. Comparative Testing

Recent interest in new methods for linear programming has resulted in the need
for serious computational comparisons between new algorithms and the simplex
method. The wide availability of the portable optimization code MINOS 5.1
(Murtagh and Saunders, 1987) has given researchers throughout the United States
the opportunity to compare new LP algorithms with a state-of-the art simplex code.

In order to facilitate a fair comparison of new methods with the simplex method,
the simplex code MINOS 5.1 has been run on the netlib standard test set of 53 real-
world problems compiled by Gay (1985a). The largest problem in this set is the
PILOT model, which has about 1500 rows, 3700 columns and 43000 nonzeros. This
problem is only medium-scale by conventional standards, yet "large" in the sense
that a cold-start solution with the simplex method takes over 20 hours on a DEC
VAXstation II.1)

The results of the experiments are given in Lustig (1987). Lustig's results illus-
trate the speed-ups that can be obtained by invoking certain optional procedures in
the simplex method, notably problem scaling and partial pricing.

An important feature of Lustig's work has been the production of a pictorial
description of the zero/nonzero structure of the constraint matrix of each test prob-
lem. The pictures reveal that a large number of problems in the set have staircase
structure. Various subsets of these problems have been used to compare the simplex
method with interior-point algorithms. The more favorable results reported for the
interior-point approach tend to be associated with strong staircase structure (see
e.g., Gill, Murray, Saunders, Tomlin and Wright, 1986; Adler, Karmarkar, Resende
and Veiga, 1987; Monma and Morton, 1987). This is fortuitous, since staircase prob-
lems have long been viewed as unusually difficult for the simplex method. Staircase
problems tend to require many simplex iterations to solve and to have rather dense
basis factorizations. It is probable that many problems of interest in the "real
world" display staircase structure. Continued research on nonlinear methods for LP
is therefore easily justified.

2.3. Sparse Least Squares

In all interior-point methods, the search direction is obtained from a system of the
form

AD2 ATq = v, (2.1)

where D is a diagonal matrix and v depends on the algorithm. If the right-hand
side happens to be of the form v = AD 2r, this system is a set of "normal equations"

'This is a typical run-time for MINOS 5.3 (May 1988). A commercial Mathematical Program-
ming System would take 10 to 20 minutes on an IBM 3090.
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equivalent to the linear least-squares problem

mrin I!D(r - ATq)112. (2.2)

The matrix AD 2 4T is large, it could be quite dense compared to A, and in general
it is very nearly singular.

The principal method developed at SOL uses the eract Cholesky factors of
AD 2 AT (excluding perhaps a few dense columns of A). The main reason is that
the sparsity pattern of the normal-equations matrix does not change as D changes;
hence a single "analyze" can be performed on the sparsity pattern of AAT to obtain
an ordering of the rows of A that preserves the sparsity of the Cholesky factor. The
same ordering is used for all subsequent factorizations AD 2 AT = RTR.

The analyze, factorize and solve procedures are performed using the off-the-shelf
equation solver SPARSPAK (see George and Liu, 1981). If necessary, a partition-
ing (Schur-complement) scheme with iterative refinement is used to remove dense
columns of A before the Cholesky factorization.

2.4. A Primal Barrier Method

Work has now been completed on a primal barrier method for linear programming.
The analysis and development of the primal method constitutes the thesis of a grad-
uate student Aeneas Marxen, which will be published (together with accompanying
reports) later this year.

The primal barrier method has been the prototype for many of the investiga-
tions into the efficiency and reliability of the numerical procedures to solve the
least-squares problem. Various techniques have been devised to regularize the least-
squares problem. For example, the addition of a quadratic term to the barrier sub-
problem and the introduction of artificial slack variables. Both these modifications
significantly improve the condition of the least-squares problem. If such or similar
modifications were not made, the least-squares problem could be so ill-conditioned
that the algorithm for computing the Cholesky factors of the matrix AD 2AT would
break down.

Until the primal method was completed, repeatable published results had in-
volved only small- to medium-scale problems, with lower bounds (but no upper
bounds) on the variables. For the first time, successful results have been obtained
on all of the 53 test problems available in the netlib collection. These results were
presented at the ORSA/TIMS Washington meeting in April (Gill, Marxen, Murray.
Saunders and Wright, 1988a). Of particular interest is the solution time for PILOT:
about 9 hours on a VAXstation II. This is a speed-up of 2.3 on a real-world model
that is unquestionably non-trivial for the simplex method. The periodic structure
revealed in Lustig (1987) may be a contributing factor, but in any event, this rep-
resents a bright note for the interior-point approach within the scope of current
repeatable computational results.

Our preliminary conclusion from this work is that the primal method can be
niade reasonably reliable. However, the algorithm is highly sensitive to many of
its parameters (e.g., the initial approximation to the solution, termination criteria.
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etc.). Both reliability and efficiency critically depend on choosing appropriate val-
ues for these and other parameters. It was found that the parameters needed for
satisfactory performance on all of the problems gave poorer average performance
on a subset of the problem having only lower bounds. This implies that published
results concerning problems with only lower bounds may be optimistic.

2.5. A Single-Phase Dual Algorithm

It has already been noted (see Gill, Murray, Saunders and Wright, 1986) that ap-
plying the barrier transformation to the dual linear program has certain numerical
advantages when solving the barrier subproblem. Report SOL 88-10 describes a
new single-phase dual algorithm that treats both upper and lower bounds on the
variables. At each iteration, estimates of both primal and dual optimal values are
maintained. The dual variables are strictly interior to the dual linear program. The
primal variables satisfy the constraints Ax = b and approach feasibility with respect
to the bounds I < x < u as the solution is approached.

Consider the dual linear program:

minimize -bTr + uTy - lTz
T .-,, (2.3)

subject to -ATir + y- z = -c, y, z > O.

In Report SOL 88-10 it is shown that the barrier search vector for the primal and
dual variables x, 7r, y and z may be defined in terms of the vector q that satisfies
the equations

AD 2ATq = AD 2r + ,u(b - Ax), (2.4)

where D is a diagonal matrix.
An important benefit of the dual barrier formulation is that if x is chosen so that

Ax = b, then (2.4) are the normal equations for a weighted least-squares problem
of the form (2.2). Least-squares problems can be solved more reliably if treated
as such. For example, conjugate-gradient methods generally require less iterations
to solve (2.2) than they do to solve (2.1), particularly when the matrix DAT is ill-
conditioned (as it invariably is in this context). We note that not all interior-point
methods permit the least-squares formulation.

A useful property of (2.3) is that for any value of the normal dual variables
ir, it is possible to choose positive values for y and z that satisfy the constraint
-ATr + y - z = -c. Thus an initial interior feasible point can be constructed easily,
and there is no need for an "artificial column" of the kind that has frequently been
introduced in this context.

Many components of y and z are "artificial variables" in the conventional sense.
For example, if u, = oo, we know that yi should be zero at an optimal solution.
Similarly if lj = -oo. In practice we can change "oo" to a reasonably large number
such as 106 and retain the components of y and z as long as convenient, even when
we know their optimal values.

An experimental implementation to solve (2.3) is currently under development
at SOL. In preliminary tests, speed-up factors in the range 1 to 13 relative to
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MINOS 5.2 have been obtained for the largest of the 53 problems in netlib. For
more details, see Report SOL 88-10. These results were presented at the 13th
International Symposium on Mathematical Programming in Tokyo, August 1988
(Gill, Marxen, Murray, Saunders and Wright, 1988b).

2.6. The Shifted Barrier Method

Newton's method is based on minimizing a local quadratic model of the barrier
function derived from first and second derivatives at the current iterate. Unfortu-
nately, several difficulties can arise because of the nature of barrier functions. The
extreme nonlinearity of the barrier term near the boundary means that a quadratic
model is accurate only in a very small neighborhood of the current point. For a
degenerate linear program, the Hessian of the barrier function becomes increasingly
ill-conditioned at the solution when the barrier parameter is very small. Moreover,
a strictly interior starting point may be inconvenient or impossible to obtain.

The shifted barrier methods developed at SOL are specifically designed to avoid
these difficulties. The shifted barrier function is of the form

7'

F(x) = crx - E w, ln(xj + s3),

where w and s are given positive vectors of weights and shifts.
The shifted barrier function enables any initial estimate to the solution to be

used. Consequently, both an infeasible and/or a good estimate may be used. Nei-
tiler of these choices is possible in current barrier methods-for example, it has been
reported that the combined software/hardware system that is currently being mar-
keted by AT&T (the KORBXTM Linear Programming System) can fail to confirm
a solution when the solution is used as the initial estimate.

By introducing shifts on the constraints we can bouind the singularity away from
the minimizer. Report SOL 88-9 describes methods for generating sequences of
weights and shifts to ensure that the minimizer of F(x) converges to the solution of
the original linear program. It is shown that there is a considerable degree of freedom
in specifying the weights and shifts. By a judicious choice, it can be assured that
the Hessian is not only bounded but also reasonably well conditioned. By allowing
any initial point, we believe that shifted barrier methods will be able to capitalize
on good estimates of the solution.

2.7. Cycling in the Simplex Algorithm

The efficiency of the new methods is judged by comparing their results to those
obtained by the simplex method. The most commonly used implementation in such
comparisons is the SOL code MINOS. A consequence of having a point of comparison
with the simplex method is to reveal some of its latent deficiencies. Therefore, it
is important, if the comparisons are to be valid, to improve the simplex method
whenever this is possible.
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A feature of many problems is that degenerate vertices are common. Degeneracy
is often regarded as a discomforting but otherwise tolerable hindrance to the sim-
plex method, and to other active-set algorithms for solving optimization problems
involving linear constraints. Sequences of non-improving steps are known to occur
(perhaps many times during a run), but such sequences are rarely observed to be
infinite. The phenomenon of "stalling" is therefore recognized and accepted, but
,cycling" is deemed very unlikely to occur.

In spite of such folklore, a rigorous anti-cycling procedure can provide welcome
peace of mind to users and implementors alike, particularly if the cost is small. Such
a procedure was given by Wolfe (1963), and the possible benefits have been demon-
strated recently by Ryan and Osborne (1986). We have devised a new anti-cycling
procedure and incorporated it into MINOS (see report SOL 88-4). An objective of
the new procedure is to preserved well-conditioned bases, and to guarantee termi-
nation on degenerate problems. Reliable performance has been achieved on all of
the netlib problems. Several advantages exist over other anti-cycling methods; for
example, there is no need to judge whether or not degeneracy is present.
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